Processing math: 100%

Expressões Numéricas com Números Naturais: Aprenda a Resolver Passo a Passo

Você já se deparou com um cálculo cheio de operações e ficou em dúvida sobre por onde começar? Resolver expressões numéricas pode parecer complicado, mas com algumas regras simples, tudo fica mais fácil!

As expressões numéricas são combinações de números e operações matemáticas, como adição, subtração, multiplicação, divisão e potenciação. Para resolvê-las corretamente, precisamos seguir uma ordem específica. Dominar esse tema é essencial para garantir sucesso na matemática básica e em problemas do dia a dia!

O que são Expressões Numéricas?

Uma expressão numérica é um conjunto de números e operações organizados para serem resolvidos seguindo regras específicas.

Exemplo de uma Expressão Numérica:

7 + (3 \times 2) \,-\, 4

Para resolver, precisamos:

  1. Respeitar a ordem das operações.
  2. Usar parênteses para organizar os cálculos.

7 + (3 \times 2) \,-\, 4

7 + 6 \, -\, 4

13 \,-\, 4

9

Ordem das Operações

Resolver expressões numéricas exige seguir uma ordem fixa para garantir o resultado correto. Essa ordem é conhecida pela sigla PEMDAS:

  1. Parênteses: Resolva primeiro o que está dentro dos parênteses.
  2. Expoentes (potenciação): Depois, resolva potências ou raízes, se houver.
  3. Multiplicação e Divisão: Resolva na ordem em que aparecem, da esquerda para a direita.
  4. Adição e Subtração: Por último, faça as somas e subtrações na ordem em que aparecem, da esquerda para a direita.

Exemplo 1: Resolver 5 + 3 \times 2 .

  1. Identifique a ordem das operações: Multiplicação antes da Adição.
  2. Calcule 3 \times 2 = 6 .
  3. Depois, faça 5 + 6 = 11 .

Resultado final: 5 + 3 \times 2 = 11

Exemplo 2: Resolver 6 + (2^3 \,-\, 4) \div 2 .

  1. Resolva o que está dentro dos parênteses:
    • Primeiro, a potência: 2^3 = 8 .
    • Depois, a subtração: 8 \,-\, 4 = 4 .
  2. Resolva a divisão: 4 \div 2 = 2 .
  3. Por último, faça a adição: 6 + 2 = 8 .

Resultado final: 6 + (2^3 \,-\, 4) \div 2 = 8

Exemplo 3: Resolver 10 + 2^3 \times (15 \,−\, 9) \div 3 \,-\, 4 = 22 .

1. Parênteses: primeiro, resolvemos o que está dentro dos parênteses, (15 \,-\, 9) = 6 .

10 + 2^3 \times (15 \,−\, 9) \div 3 \,-\, 4

10 + 2^3 \times 6 \div 3 \,-\, 4

2. Expoentes: resolva 2^3 = 8 .

10 + 2^3 \times 6 \div 3 \,-\, 4

10 + 8 \times 6 \div 3 \,-\, 4

3. Multiplicação e Divisão (da esquerda para a direita).

  • Resolva 8 \times 6 = 48 .

10 + 8 \times 6 \div 3 \,-\, 4

10 + 48 \div 3 \,-\, 4

  • Resolva 48 \div 3 = 16 .

10 + 48 \div 3 \,-\, 4

10 + 16 \,-\, 4

4. Adição e Subtração (da esquerda para a direita).

  • Resolva 10 + 16 = 26 .

10 + 16 \,-\, 4

26 \,-\, 4

  • Resolva 26\,-\, 4 = 22 .

26 \,-\, 4

22

Resultado Final:

10 + 2^3 \times (15 \,−\, 9) \div 3 \,-\, 4 = 22

Dicas para Resolver Expressões Numéricas

  1. Siga a ordem das operações: Respeitar a sequência é essencial para evitar erros.
  2. Resolva devagar: Faça uma operação por vez e verifique cada passo.
  3. Organize os cálculos: Use parênteses para manter clareza e organizar os passos.

Desafios para Praticar

  1. Resolva: (8 + 4 \div 2) \times 3
  2. Resolva: 5^2 \,-\, (12 \div 4) + 7
  3. Resolva: (15 \,-\, 3 \times 2) + 10 \div 2

Resolver expressões numéricas é como seguir uma receita: basta respeitar os passos para chegar ao resultado certo! Com prática e atenção, você dominará essa habilidade rapidamente. Continue explorando mais conteúdos no Matemática Leonel e aprimore suas habilidades matemáticas.

Agora, que tal compartilhar suas respostas nos comentários e comparar com outros estudantes? 😊

Deixe um comentário